COS 316
Precept: Cache Eviction (Replacement)
Overview of Web Caching

- Basic idea:
 - Bring objects “closer” to clients
- Three primary features:
 - Reduce network bandwidth
 - Reduce client-perceived delays
 - Reduce load on server
- Cache Replacement Strategy
 - When a cache becomes full, which object should be **evicted/replaced?**
Cache Eviction Algorithms

• High level
 • Client requests a new object
 • If object is in cache, return the object
 • If object is not in cache:
 • Get object from server/provider and return the object
 • Cache full:
 • Identify an object in cache to evict
 • Evict the object in the cache
 • Replace with new object
 • Cache not full:
 • Admit the new object to the cache
Cache Eviction Algorithms

- Least recently used (LRU): Evict the object from the cache whose last request is the oldest

- First-in, First-out (FIFO): Evict the object from the cache that has been in the cache the longest

- Many others...
LRU

<table>
<thead>
<tr>
<th>ID</th>
<th>Size</th>
<th>Request Time</th>
<th>Admit Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>13:00</td>
<td>11:00</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13:45</td>
<td>13:45</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>15:01</td>
<td>12:01</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>11:30</td>
<td>11:30</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>13:30</td>
<td>13:30</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Current time: 16:00

Cache capacity = 50
Cache size = 45
<table>
<thead>
<tr>
<th>id</th>
<th>size</th>
<th>request</th>
<th>admit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>13:00</td>
<td>11:00</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13:45</td>
<td>13:45</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>15:01</td>
<td>12:01</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>11:30</td>
<td>11:30</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>11:30</td>
<td>13:30</td>
</tr>
</tbody>
</table>

Current time: 16:00

Cache capacity = 50
Cache size = 45
LRU

Cache capacity = 50
Cache size = 45

Current time: 16:00

id: 6
size: 2
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 11:30
admit: 11:30

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: 16:00
admit: 16:00

Current time: 16:00

id: 11
size: 8
request: 11:30
admit: 11:30

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 10
size: 10
request: 13:45
admit: 13:45

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: 16:00
admit: 16:00

Current time: 16:00

id: 11
size: 8
request: 11:30
admit: 11:30

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 10
size: 10
request: 13:45
admit: 13:45

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: 16:00
admit: 16:00

Current time: 16:00

id: 11
size: 8
request: 11:30
admit: 11:30

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 10
size: 10
request: 13:45
admit: 13:45

id: 4
size: 5
request: 11:53
admit: 11:33

id: 7
size: 17
request: 13:30
admit: 13:30

id: 8
size: 10
request: 16:00
admit: 16:00
FIFO

<table>
<thead>
<tr>
<th>id</th>
<th>size</th>
<th>request</th>
<th>admit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>13:00</td>
<td>11:00</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13:45</td>
<td>13:45</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>15:01</td>
<td>12:01</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>11:53</td>
<td>11:33</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>11:30</td>
<td>11:30</td>
</tr>
</tbody>
</table>

Current time: 16:00

Cache capacity = 55
Cache size = 45

<table>
<thead>
<tr>
<th>id</th>
<th>size</th>
<th>request</th>
<th>admit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13:00</td>
<td>13:45</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>15:01</td>
<td>12:01</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>11:53</td>
<td>11:33</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>13:30</td>
<td>13:30</td>
</tr>
</tbody>
</table>

Current time: 16:00

Cache capacity = 55
Cache size = 45

<table>
<thead>
<tr>
<th>id</th>
<th>size</th>
<th>request</th>
<th>admit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>16:00</td>
<td>16:00</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13:45</td>
<td>13:45</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>15:01</td>
<td>12:01</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>11:53</td>
<td>11:33</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>11:30</td>
<td>11:30</td>
</tr>
</tbody>
</table>

Current time: 16:00

Cache capacity = 55
Cache size = 53
FIFO

id: 8
size: 10
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 1
size: 3
request: 15:01
admit: 12:01

id: 11
size: 8
request: 11:30
admit: 11:30

Cache capacity = 55
Cache size = 45

id: 6
size: 2
request: 13:00
admit: 11:00

id: 3
size: 10
request: 13:45
admit: 13:45

id: 4
size: 5
request: 15:01
admit: 11:33

id: 11
size: 8
request: 11:30
admit: 11:30

Cache capacity = 55
Cache size = 45

id: 8
size: 10
request: __:__
admit: __:__

id: 3
size: 10
request: 13:45
admit: 13:45

id: 4
size: 5
request: 15:01
admit: 11:33

id: 11
size: 8
request: 11:30
admit: 11:30

Cache capacity = 55
Cache size = 53

Current time: 16:00
Experiments

> cd <Precepts repo>

> git pull # update with precept5 code and data

> cd precept5/webcachesim-master

> make
Trace File Form

- Request traces must be given in a space-separated format with three columns
 - time - long long int
 - id - long long int, used to uniquely identify objects
 - size should be a long long int, object's size in bytes

- Example

<table>
<thead>
<tr>
<th>time</th>
<th>id</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>120</td>
</tr>
</tbody>
</table>

- See test.tr
Using the Simulator*

> ./webcachesim test.tr LRU 1000

LRU: 1000 bytes, 10492 reqs, 8495 hits, 81 hits/reqs(%)

> ./webcachesim test.tr FIFO 1000

FIFO: 1000 bytes, 10492 reqs, 8206 hits, 78 hits/reqs(%)

* Derived from https://github.com/dasebe/webcachesim
Experiments

- Trace data from a production CDN
 - cd1-10M.tr *
 - 10 million requests / Object sizes from 10 byte to .7GB
- LIFO and FIFO
- Vary cache sizes
 - 16000000
 - 32000000
 - 64000000
 - 128000000
 - 256000000
 - 512000000
 - 1024000000
 - 2048000000
 - 4096000000
- Create a Google Sheet
- Three columns
- SIZE LRU FIFO
- Copy results accordingly
- Select three columns to create line chart

* Practical Bounds on Optimal Caching with Variable Object Sizes Daniel S. Berger, Nathan Beckmann, Mor Harchol-Balter. ACM SIGMETRICS, June 2018
Experiments

- LRU and FIFO
- Vary cache sizes
 - 80
 - 160
 - 320
 - 640
 - 1280
 - 2560
 - 5120

- Create a Google Sheet
- Three columns
- SIZE LRU FIFO
- Copy results accordingly
- Select three columns to create line chart