Learning Relaxed Belady for CDN Caching

COS 316: Principles of Computer System Design
Lecture 10

Amit Levy & Wyatt Lloyd
Edge Cache with Different Algos

- Clairvoyant (Bélády) shows we can do much better!
Cutting Edge Research From Princeton!

Learning Relaxed Belady for Content Distribution Network Caching.

Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd.

In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), February 2020.
CDN Caching Goal: Minimize WAN Traffic

Wide Area Network (WAN) traffic is expensive

Key metric hit ratio
Caching Remains Challenging

Heuristic-based algorithms (1965–): LRU, LFU, GDSF, ARC, ...
- Work well for some workloads, but work poorly for other

ML-based adaptation of heuristics (2017–): UCB, LeCAR, ...
- Also work well for some workloads, but poorly for others

The Belady algorithm (1966)
- Offline optimal: requires future knowledge
- Large gap in miss ratio between state-of-the-art and Belady:
- 20–40% on production traces
Introducing Learning Relaxed Belady (LRB)

New approach: mimic Belady using machine learning

- Machine-Learning-for-Systems (ML-for-Systems)
 - Enabling technologies
 - When does it make sense?
General Overview of our Approach

- Past information
- Now

- Training data
- Cache

- ML architecture
- Eviction candidates
Challenge 1: Past Information

What past information to use?

More data improves training but increases memory overhead
Challenge 2: Generate Online Training Data

What past information to use?
Generate online training data?

Past information

Now

Training data

Cache

ML architecture

Eviction candidates
Challenge 3: ML Architecture

- What past information to use?
- Generate online training data?
- What ML architecture to select?

Large design space: features, model, prediction target, loss function
Challenge 4: Eviction Candidates

- What past information to use?
- Generate online training data?
- What ML architecture to select?
- How to select evict candidates?
Solution: Relaxed Belady Algorithm

- What past information to use?
- Generate online training data?
- What ML architecture to select?
- How to select evict candidates?
Challenge: Hard to Mimic Belady Algorithm

Belady: evict object with next access farthest in the future

Mimicking exact Belady is impractical
- Need predictions for all objects → prohibitive computational cost
- Need exact prediction of next access → further prediction are harder

Cache (now)

Evict
Introducing the Relaxed Belady Algorithm

Observation: many objects are good candidates for eviction

Relaxed Belady evicts a random object beyond boundary
- Do not need predictions for all objects → reasonable computation
- No need to differentiate beyond boundary → simplifies the prediction
Challenge 1: Past Information

What past information to use?

More data improves training but increases memory overhead
Track Objects within a Sliding Memory Window

Sliding memory window mimics Belady boundary

Only track objects within memory window

Window size is LRB’s main hyperparameter
Challenge 2: Training Data

Past information

Now

What past information to use?

Generate online training data?

Training data

Cache

ML architecture

Eviction candidates
Sample Training Data & Label on Access or Boundary

- Sliding memory window
- Now
- Unlabeled training data
- Labeled training data
- Access

Per object features

Sample

Past memory window
Challenge 3: ML Architecture

What past information to use?
Generate online training data?
What ML architecture to select?
Large potential design space
Solution 3: Feature & Model Selection

Use good decision ratio to evaluate new designs

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object size</td>
</tr>
<tr>
<td>Object type</td>
</tr>
<tr>
<td>Inter-request distances (recency)</td>
</tr>
<tr>
<td>Exponential decay counters (long-term frequencies)</td>
</tr>
</tbody>
</table>

Gradient boosting decision trees

Lightweight & high good decision ratio

Training ~300 ms, prediction ~30 us
Challenge 4: Eviction Candidates

Past information

Training data

ML architecture

Cache

Eviction candidates

What past information to use?
Generate online training data?
What ML architecture to select?
How to select evict candidates?
Solution 4: Random Sampling for Eviction

Can mimic relaxed Belady if we can find 1 object beyond the boundary

k=64 candidates; more does not improve good decision ratio
Learning Relaxed Belady

- Labeled dataset
- Unlabeled dataset
- Labeled dataset
- Memory window
 - Sample
 - Eviction candidates
 - Sample
 - Evict
 - Predict
 - Model
 - Train
 - Cache
Implementation

- Simulator implementation
 - LRB + 14 other algorithms

- Prototype implementation
 - C++ on top of production system (Apache Traffic Server)
 - Many optimizations
Evaluation Setup

- Q1: Learning Relaxed Belady (LRB) traffic reduction vs state-of-the-art
- Q2: overhead of LRB vs CDN production system
- Traces: 6 production traces from 3 CDNs
- Hyperparameter (memory window/model/...) tuned on 20% of trace
LRB Reduces WAN Traffic

- Industry standard

- 20% traffic reduction over B-LRU
- 10% reduction over the best SOA

![Graph showing traffic reduction across different cache sizes for LRB, LFUDA, LRU4, Adaptive-TinyLFU, LeCaR, B-LRU, and LRU. The graph uses the Wikipedia trace and shows LRB performing significantly better than the others at high cache sizes.](image)
LRB Consistently Improves on the State of the Art

- **LRB (Ours)**
- **LFUDA**
- **LRU4**
- **TinyLFU**
- **LeCaR**
- **B-LRU**
- **LRU**

Wikipedia

- **Traffic Reduction to B-LRU**
 - Log Cache Size (GB): 64, 128, 256, 512, 1024
 - Traffic Reduction: 0%, 10%, 20%, 30%

CDN-A1

- **Traffic Reduction to B-LRU**
 - Log Cache Size (GB): 64, 128, 256, 512, 1024
 - Traffic Reduction: 0%, 10%, 20%, 30%

CDN-A2

- **Traffic Reduction to B-LRU**
 - Log Cache Size (GB): 64, 128, 256, 512, 1024
 - Traffic Reduction: 0%, 10%, 20%, 30%

CDN-B1

- **Traffic Reduction to B-LRU**
 - Log Cache Size (GB): 128, 256, 512, 1024, 2048, 4096
 - Traffic Reduction: 0%, 10%, 20%, 30%

CDN-B2

- **Traffic Reduction to B-LRU**
 - Log Cache Size (GB): 128, 256, 512, 1024, 2048, 4096
 - Traffic Reduction: 0%, 10%, 20%, 30%

CDN-B3

- **Traffic Reduction to B-LRU**
 - Log Cache Size (GB): 128, 256, 512, 1024, 2048, 4096
 - Traffic Reduction: 0%, 10%, 20%, 30%
LRB Overhead Is Modest

Throughput: 11.7 Gbps vs 11.7 Gbps (unmodified)

Memory overhead = 1–3% cache size

Peak CPU: 16% vs 9% (unmodified)
Conclusion

- LRB reduces WAN traffic with modest overhead
- ML-for-systems generally promising to replace heuristics

- Key insight: relaxed Belady
 → Simplifies machine learning & reduces system overhead